Difference between revisions of "3D numerical morphodynamic models"

From REFORM wiki
Jump to: navigation, search
m (Sample applications)
m (Sample applications)
 
Line 48: Line 48:
 
Olsen N.R.B. (2000): CFD modeling of bed changes during flushing of a reservoir. Proc., Hydroinformatics 2000, Iowa, USA.
 
Olsen N.R.B. (2000): CFD modeling of bed changes during flushing of a reservoir. Proc., Hydroinformatics 2000, Iowa, USA.
  
Olsen N.R.B. (2002): Estimating meandering channel evolution using a 3D CFD model. Proc., Hydroinformatics 2002, Cardiff, pp.52-57.
+
Olsen N.R.B. (2002): Estimating meandering channel evolution using a 3D CFD model. Proc., Hydroinformatics 2002, Cardiff, pp.52-57. ISBN: 9781843390213
  
 
Tritthart M., Schober B., Liedermann M., Habersack H. (2009): Development of an Integrated Sediment Transport Model for a Large Gravel Bed River. Proceedings, 33rd IAHR Congress, Vancouver, Canada.
 
Tritthart M., Schober B., Liedermann M., Habersack H. (2009): Development of an Integrated Sediment Transport Model for a Large Gravel Bed River. Proceedings, 33rd IAHR Congress, Vancouver, Canada.
  
 
[[Category:Tools]][[Category:Hydromorphological models]]
 
[[Category:Tools]][[Category:Hydromorphological models]]

Latest revision as of 13:07, 16 April 2013

3D numerical morphodynamic models

Type

Hydromorphological models

Basic principles

Fundamental equations for conservation of water mass and water flow momentum, time-averaged over all turbulent fluctuations (RANS = Reynolds Averaged Navier-Stokes equation) or time-averaged over only the smaller turbulent fluctuations (LES = Large Eddy Simulation). Lagrangian equations for pickup, transport and deposition of sediment particles. Exner equation for conservation of sediment mass.

Outputs

Flow velocities, water depths, water levels, flow shear stresses. Sediment transport, bed level, erosion, sedimentation.

Rivertypes

Related Pressures

Related Measures

Useful references

Selected software systems

Delft3D: http://www.deltaressystems.com/hydro/product/621497/delft3d-suite

FLOW-3D: http://www.flow3d.com/

iSed

SSIIM: http://folk.ntnu.no/nilsol/ssiim/

TELEMAC-3D

Theoretical background

Hervouet J.M., Hubert J.-L., Janin J.-M., Lepeintre F., Peltier E. (1994): The computation of free surface flows with TELEMAC: an example of evolution towards hydroinformatics. Journal of Hydraulic Research, 32, extra issue, pp. 45-64. http://www.tandfonline.com/doi/abs/10.1080/00221689409498804

Olsen N.R.B (1999): Computational Fluid Dynamics in Hydraulic and Sedimentation Engineering. Class Notes, Norewgian University of Technology, Trondheim.

Tritthart M. (2005): Three-Dimensional Numerical Modelling of Turbulent River Flow using Polyhedral Finite Volumes. Wiener Mitteilungen Wasser-Abwasser-Gewässer, Band 193, Institut für Wasserbau und Ingenieurhydrologie, TU Wien. http://www.hydro.tuwien.ac.at/uploads/media/Wiener-Mitteilungen-Band-193_01.pdf

Tritthart M. and Gutknecht D. (2007): Three-Dimensional Simulation of Free-Surface Flows using Polyhedral Finite Volumes. Engineering Applications of Computational Fluid Mechanics, 1, pp. 1-14. http://jeacfm.cse.polyu.edu.hk/

Sample applications

Olsen N.R.B (2000): A three-dimensional numerical model for simulation of sediment movements in water intakes with multiblock option. User´s Manual, Norwegian University of Science and Technology, Trondheim.

Olsen N.R.B. (2000): CFD modeling of bed changes during flushing of a reservoir. Proc., Hydroinformatics 2000, Iowa, USA.

Olsen N.R.B. (2002): Estimating meandering channel evolution using a 3D CFD model. Proc., Hydroinformatics 2002, Cardiff, pp.52-57. ISBN: 9781843390213

Tritthart M., Schober B., Liedermann M., Habersack H. (2009): Development of an Integrated Sediment Transport Model for a Large Gravel Bed River. Proceedings, 33rd IAHR Congress, Vancouver, Canada.