Difference between revisions of "Alteration of instream habitat"
(→General description) |
(→Effect/Impact on (including literature citations)) |
||
Line 14: | Line 14: | ||
==Effect/Impact on (including literature citations)== | ==Effect/Impact on (including literature citations)== | ||
− | + | All hydromorphological pressures affect instream habitat, but in this section, we refer to those pressures that directly destroy the aquatic habitat, such as channel dredging and mining, and the reinforcement of channel bed and banks with introduced materials such as concrete or rip-rap. These activities generally reduce channel boundary roughness, leading to increased flow velocities and other consequences similar to those resulting from channelization. Assessing the effects of these specific pressures is difficult due to their association with other potential habitat-altering variables. For example, increases in turbidity and siltation can easily arise from | |
− | + | agricultural land use (i.e. cattle grazing) in both channelized and reference streams. | |
− | + | ||
==Case studies where this pressure is present== | ==Case studies where this pressure is present== | ||
<Forecasterlink type="getProjectsForPressures" code="P15" /> | <Forecasterlink type="getProjectsForPressures" code="P15" /> |
Revision as of 08:44, 1 September 2015
Contents
Alteration of instream habitat
04. Morphological alterations
General description
Natural instream habitats offer refuge and shelter, food resources and spawning grounds to aquatic biota. Recognition of instream habitat alteration should be based on changes in surface flow type, hydraulic attributes (flow depth, velocity and bed roughness, shear velocity, Reynolds and Froude numbers), channel morphology, and bed substrate calibre. Instream habitat degradation may be an effect of a hydrogeomorphological process (natural or caused by other pressures), or of a direct human activity (e.g. channel dredging, gravel bed extraction). The latter activities are those pressures we are refering to here.
Effect/Impact on (including literature citations)
All hydromorphological pressures affect instream habitat, but in this section, we refer to those pressures that directly destroy the aquatic habitat, such as channel dredging and mining, and the reinforcement of channel bed and banks with introduced materials such as concrete or rip-rap. These activities generally reduce channel boundary roughness, leading to increased flow velocities and other consequences similar to those resulting from channelization. Assessing the effects of these specific pressures is difficult due to their association with other potential habitat-altering variables. For example, increases in turbidity and siltation can easily arise from agricultural land use (i.e. cattle grazing) in both channelized and reference streams.
Case studies where this pressure is present
- current_deflector_Eichenfelde
- Negro
- Opijnen_-_Side_Channel
- Gameren
- Freienbrink
- DOÑANA/RESTAURACIÓN_DEL_ARROYO_DEL_PARTIDO
- Charlottenburg_artificial_bay
- Charlottenburg_wave-protected_shallow
- sheet_pile_protected_shallow_new
- Westlicher_Abzugsgraben
- Vén_Duna_-_side_arm_reopening
- Renaturierung_Untere_Havel
- Meander_fish_ramp_Erpe_BB
- Fish_ramp_Erpe_BB
- Fish_ramp_Erpe_Berlin
- Pisuerga._Improvement_of_ecological_state_of_the_river_between_the_dam_Pisuerga_Aguilar_de_Campo_and_Alar_del_Rey_(Palencia)_1st_Stage.
- Bemmelse_Waard_–_Restoring_former_floodplains_(INTERREG_Sustainable_Development_of_Floodplains)
- Fovant_-_Demonstrating_strategic_restoration_and_management_STREAM_(LIFE05_NAT/UK/000143)
- Heessen_-_Optimisation_of_the_pSCI_“Lippe_floodplain_between_Hamm_and_Hangfort”_(LIFE05/NAT/D/000057)
- Ahlen-Dolberg_-_Optimisation_of_the_pSCI_“Lippe_floodplain_between_Hamm_and_Hangfort”_(LIFE05/NAT/D/000057)
- Conservation_of_Atlantic_Salmon_in_Scotland_(LIFE_04/NAT/GB/000250)
- Northern_Sweden_-_From_source_to_sea,_restoring_river_Moälven_(LIFE05_NAT/S/000109)_
- Ems_floodplain_(LIFE_project)
- Aaijen_-_Removal_of_Bank_Fixation
- Meers
- Klebach_-_Side_channel
- Bakenhof_-_Dyke_relocation
- Sweden-_Restoration_of_the_Freshwater_Pearl_Mussel_and_its_habitats_(LIFE04/NAT/SE/000231)
- Niederwerrieser_Weg_-_Optimisation_of_the_pSCI_“Lippe_floodplain_between_Hamm_and_Hangfort”_(LIFE05/NAT/D/000057)
- Soest_-_Optimisation_of_the_pSCI_“Lippe_floodplain_between_Hamm_and_Hangfort”_(LIFE05/NAT/D/000057)
- Lek_bij_Everdingen_-_Groyne_Shields
- Carrión
- Bergen_-_Removal_of_Bank_Fixation
- Polder_Ingelheim_–_Restoring_former_floodplains_(INTERREG_Sustainable_Development_of_Floodplains)
- Amesbury_on_the_river_Avon_-_Demonstrating_strategic_restoration_and_management_STREAM_(LIFE05_NAT/UK/000143)
- Stream_-mending_the_Avon
- Pastures_Bridge_Rehabilitation
- Inchewan_Burn_Bed_Restoration
- River_Wensum_Rehabilitation_Project
- River_Skerne_EU-LIFE_project
- Upper_Woodford_-_Demonstrating_strategic_restoration_and_management_STREAM_(LIFE05_NAT/UK/000143)
- Oberwerries_-_Optimisation_of_the_pSCI_“Lippe_floodplain_between_Hamm_and_Hangfort”_(LIFE05/NAT/D/000057)
- Sella
- Asseltse_Plassen_-_Bank_erosion
- Beneden-Leeuwen_-_Side_channel
- Vreugderijkerwaard_-_Side_channel
- Weissenthurm
- Chícamo_Life_project._Conservation_of_Aphanius_iberus´_genetics_stocks_(_Murcia_).
- Haselünne
- Uilenkamp
- Rijkelse_Beemden_-_River_bed_widening
- Tajo._Improvement_of_ecological_state_of_the_Tajo_and_tributaries__riverside_affected_by_the_spill_of_kaolin,_at_Poveda_de_la_Sierra_and_Taravilla_(Guadalajara)
- Hondsbroeksche_Pleij_–_Restoring_former_floodplains_(INTERREG_Sustainable_Development_of_Floodplains)
- Chilhampton_-_Demonstrating_strategic_restoration_and_management_STREAM_(LIFE05_NAT/UK/000143)
- Woodgreen_-_Demonstrating_strategic_restoration_and_management_STREAM_(LIFE05_NAT/UK/000143)
- Buiten_Ooij_-_Sluice_operation_
- Improvement_of_aquatic_habitat_of_Segre_River__at_Alòs_de_Balaguer
- Stora
- River_Rhine_-_IJsseluiterwaarden_Olst
- Scheldt_-_Vallei_Grote_Nete
- Rhine_-_Meinerswijk
- Hampshire_Avon_-_Hale
- Restoration_and_remeandering_of_the_Müggelspree_-_downstream_Mönchwinkel
- Dommel_Eindhoven
- Narew_river_restoration_project_
- Lower_Traun
- Middle_Warta_River_Valley
- Lippeaue_Klostermersch
- Drava_-_Kleblach
- Thur_
- Töss
- Enns_-_Aich
- Cölbe
- Vääräjoki_-_Niskakoski
- KUIVAJOKI
- Emån_-_Emsfors
- Mörrumsån_-_Hemsjö
Possible restoration, rehabilitation and mitigation measures
- Add/feed sediment
- Reduce undesired sediment input
- Reduce erosion
- Favour morphogenic flows
- Link flood reduction with ecological restoration
- Manage aquatic vegetation
- Remeander water courses
- Widen water courses
- Shallow water courses
- Allow/increase lateral channel migration or river mobility
- Narrow water courses
- Create low flow channels in over-sized channels
- Initiate natural channel dynamics to promote natural regeneration
- Modify aquatic vegetation maintenance
- Introduce large wood
- Remove bank fixation
- Recreate gravel bar and riffles
- Remove or modify in-channel hydraulic structures
- Revegetate riparian zones
- Remove bank fixation
- Remove non-native substratum
- Develop riparian forest
- Lower river banks or floodplains to enlarge inundation and flooding
- Reconnect backwaters and wetlands
- Restore wetlands
- Retain floodwater
- Construct semi-natural/articificial wetlands or aquatic habitats