Difference between revisions of "2DH numerical morphodynamic models"

From REFORM wiki
Jump to: navigation, search
m (Theoretical background)
m (Basic principles)
 
(One intermediate revision by the same user not shown)
Line 5: Line 5:
  
 
==Basic principles==
 
==Basic principles==
Fundamental equations for conservation of water mass and water flow momentum, spatially averaged over water depth and time-averaged over all turbulent fluctuations (RANS = Reynolds Averaged Navier-Stokes equation) or time-averaged over only the smaller turbulent fluctuations (LES = Large Eddy Simulation). Parameterized relation for effect of helical flow on bed shear stress direction.
+
Fundamental equations for conservation of water mass and water flow momentum, spatially averaged over water depth (hence “H” for horizontal plane in “2DH”)
 +
and time-averaged over all turbulent fluctuations (RANS = Reynolds Averaged Navier-Stokes equation) or time-averaged over only the smaller turbulent fluctuations (LES = Large Eddy Simulation). Parameterized relation for effect of helical flow on bed shear stress direction.
 
Equilibrium sediment transport predictor or advection-relaxation equation for sediment transport. Empirical relation for effect of sloping beds on sediment transport magnitude and direction. Exner equation for conservation of sediment mass.
 
Equilibrium sediment transport predictor or advection-relaxation equation for sediment transport. Empirical relation for effect of sloping beds on sediment transport magnitude and direction. Exner equation for conservation of sediment mass.
 
Possibly with extension to mixtures of different sediment grain sizes, accounting for mutual interactions through empirical relations for hiding and exposure.
 
Possibly with extension to mixtures of different sediment grain sizes, accounting for mutual interactions through empirical relations for hiding and exposure.
Line 81: Line 82:
  
 
===Sample applications===
 
===Sample applications===
Montes Arboleda A., Crosato A., Middelkoop H. (2010): Reconstructing the early 19th-century Waal River by means of a 2D physics-based model. Hydrological Processes, DOI: 10.1002/hyp.7804.
+
Montes Arboleda A., Crosato A., Middelkoop H. (2010): Reconstructing the early 19th-century Waal River by means of a 2D physics-based model. Hydrological Processes, 24, No.25, pp. 3661–3675. http://onlinelibrary.wiley.com/doi/10.1002/hyp.7804/abstract
  
 
Fäh R., Müller R., Rousselot P., Vetsch D. (2008): Sohlenentwicklung in einer Flussaufweitung beim Durchgang einer Hochwasserwelle - Vergleich zwischen Messung und numerischer Modellierung. Wasser Energie Luft, 100. Jahrgang, Heft 2, Baden.
 
Fäh R., Müller R., Rousselot P., Vetsch D. (2008): Sohlenentwicklung in einer Flussaufweitung beim Durchgang einer Hochwasserwelle - Vergleich zwischen Messung und numerischer Modellierung. Wasser Energie Luft, 100. Jahrgang, Heft 2, Baden.
Line 87: Line 88:
 
Moser M., Eckerstorfer T., Jäger G. (2007): Möglichkeiten und Grenzen im Einsatz von numerischen hydraulischen Simualtionsmodellen als Werkzeug und Unterstützung zu gebräuchlichen Berechnungsmethoden bzw. Verfahren für die Abgrenzung und Barstellung von Gefahrenzonen  am Beispiel des Zederhausbaches. Dresdner Wasserbauliche Mitteilungen, Heft 35, S. 525-534.
 
Moser M., Eckerstorfer T., Jäger G. (2007): Möglichkeiten und Grenzen im Einsatz von numerischen hydraulischen Simualtionsmodellen als Werkzeug und Unterstützung zu gebräuchlichen Berechnungsmethoden bzw. Verfahren für die Abgrenzung und Barstellung von Gefahrenzonen  am Beispiel des Zederhausbaches. Dresdner Wasserbauliche Mitteilungen, Heft 35, S. 525-534.
  
Weilbeer H., Zielke W. (2000): Application of the TELEMAC system to the simulation of dumping of excavated material in the River Rhine. Hydrological Processes, 14, pp. 2355-2363.
+
Weilbeer H., Zielke W. (2000): Application of the TELEMAC system to the simulation of dumping of excavated material in the River Rhine. Hydrological Processes, 14, pp. 2355-2363. http://onlinelibrary.wiley.com/doi/10.1002/1099-1085%28200009%2914:13%3C2355::AID-HYP34%3E3.0.CO;2-R/abstract
  
 
[[Category:Tools]][[Category:Hydromorphological models]]
 
[[Category:Tools]][[Category:Hydromorphological models]]

Latest revision as of 17:09, 22 October 2014

Factsheet: 2DH numerical morphodynamic models

General
Category Hydromorphological models
River Characterisation
Pressures
Measures


2DH numerical morphodynamic models

Type

Hydromorphological models

Basic principles

Fundamental equations for conservation of water mass and water flow momentum, spatially averaged over water depth (hence “H” for horizontal plane in “2DH”) and time-averaged over all turbulent fluctuations (RANS = Reynolds Averaged Navier-Stokes equation) or time-averaged over only the smaller turbulent fluctuations (LES = Large Eddy Simulation). Parameterized relation for effect of helical flow on bed shear stress direction. Equilibrium sediment transport predictor or advection-relaxation equation for sediment transport. Empirical relation for effect of sloping beds on sediment transport magnitude and direction. Exner equation for conservation of sediment mass. Possibly with extension to mixtures of different sediment grain sizes, accounting for mutual interactions through empirical relations for hiding and exposure. Possibly with bank erosion equations or interface with bank dynamics model.

Outputs

Flow velocities, water depths, water levels, flow shear stresses. Sediment transport, bed level, erosion, sedimentation, bed sediment composition.

Rivertypes

Related Pressures

Related Measures


Useful references

Selected software systems

Basement: http://www.basement.ethz.ch/

CCHE 2D: http://www.ncche.olemiss.edu/cche2d

Delft3D: http://www.deltaressystems.com/hydro/product/621497/delft3d-suite

FLO-2D: http://www.flo-2d.com/

FLUMEN: http://www.fluvial.ch/p/flumen.html

HYDRO_GS-2D: http://www2.hydrotec.de/vertrieb/hydro_as_2d/hydro-gs-2d

HYDRO_ST-2D: http://www2.hydrotec.de/vertrieb/hydro_as_2d/hydro-st-2d

IRIC: http://ws3-er.eng.hokudai.ac.jp/yasu/iric/20120525/iRIC_Sofware_Panf_en_120223.pdf

iSed

Mike21C: http://www.mikebydhi.com/Products/CoastAndSea/MIKE21.aspx

Rubar20: http://www.irstea.fr/rubar20

SED-2D: http://chl.erdc.usace.army.mil/sed2d

TELEMAC-2D & SUBIEF/SISYPHE

Theoretical background

Anderson M.G. [ed.](2000): Special Issue: The TELEMAC Modelling System. Hydrological Processes, Vol. 14,pp. 2207-2364.

Beffa C. (2003): 2D-Strömungssimulation mit Flumen. ÖWAV-Seminar 26.-27.2.2003 "Fließgewässermodellierung - von der Ein-zur Merhdimensionalität?!", Wien.

Crosato A. and Samir Saleh M. (2011): Numerical study on the effects of floodplain vegetation on river planform style. Earth Surface Processes and Landforms, 36, No.6, pp.711–720. http://onlinelibrary.wiley.com/doi/10.1002/esp.2088/abstract

Darby S.E., Alabyan A., van de Wiel M.J. (2002): Numerical simulation of bank erosion and channel migration for meandering rivers. Water Resources Research, Vol.38, No.9, p.1163. http://onlinelibrary.wiley.com/doi/10.1029/2001WR000602/abstract

Fäh R., Müller R., Rousselot P., Vetsch D., Volz C., Farshi D. (2008): System Manuals of BASEMENT, Version 1.5. Laboratory of Hydraulics, Glaciology and Hydrology (VAW), ETH Zürich.

Fäh R. (1997): Numerische Simulation der Strömung in offenen Gerinnen mit beweglicher Sohle. Mitteilung Nr. 153, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich.

Mosselman E. (1998): Morphological modelling of rivers with erodible banks. Hydrological Processes, Vol.12, No.8, pp.1357-1370. http://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291099-1085%2819980630%2912:8%3C1357::AID-HYP619%3E3.0.CO;2-7/abstract

Mosselman E. (2012): Modelling sediment transport and morphodynamics of gravel-bed rivers. Chapter 9 in Gravel-bed rivers: processes, tools, environments. Eds. M. Church, P. Biron & A.G. Roy, 2012, Chichester, John Wiley & Sons: 563pp. ISBN 978-0-470-68890-8, pp.101-115.

Spasojevic M. and Holly F.M. (1990): 2-D Bed Evolution in Natural Watercourses - New Simulation Approach. ASCE Journal of Waterway, Port, Coastal, and Ocean Engineering, 116 (4), pp. 425-443. http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-950X%281990%29116%3A4%28425%29

Struiksma N., Olesen K.W., Flokstra C., de Vriend H.J. (1985): Bed deformation in curved alluvial channels. Journal of Hydraulic Research, IAHR, Vol.23, No.1, pp.57-79. http://www.tandfonline.com/doi/abs/10.1080/00221688509499377

Tritthart M., Schober B., Liedermann M., Habersack H. (2009): Development of an Integrated Sediment Transport Model for a Large Gravel Bed River. Proceedings, 33rd IAHR Congress, Vancouver, Canada.

Wu W., Rodi W., Wenka T. (2000): 3D numerical modeling of flow and sediment transport in open channels. Journal of Hydraulic Engineering, 126, pp. 4-15. http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%282000%29126%3A1%284%29

Wu W. (2001): CCHE2D Sediment Transport Model version 2.1. NCCHE Technical Report. NCCHE-TR-2001-03, University of Mississippi, MS, USA.

Sample applications

Montes Arboleda A., Crosato A., Middelkoop H. (2010): Reconstructing the early 19th-century Waal River by means of a 2D physics-based model. Hydrological Processes, 24, No.25, pp. 3661–3675. http://onlinelibrary.wiley.com/doi/10.1002/hyp.7804/abstract

Fäh R., Müller R., Rousselot P., Vetsch D. (2008): Sohlenentwicklung in einer Flussaufweitung beim Durchgang einer Hochwasserwelle - Vergleich zwischen Messung und numerischer Modellierung. Wasser Energie Luft, 100. Jahrgang, Heft 2, Baden.

Moser M., Eckerstorfer T., Jäger G. (2007): Möglichkeiten und Grenzen im Einsatz von numerischen hydraulischen Simualtionsmodellen als Werkzeug und Unterstützung zu gebräuchlichen Berechnungsmethoden bzw. Verfahren für die Abgrenzung und Barstellung von Gefahrenzonen am Beispiel des Zederhausbaches. Dresdner Wasserbauliche Mitteilungen, Heft 35, S. 525-534.

Weilbeer H., Zielke W. (2000): Application of the TELEMAC system to the simulation of dumping of excavated material in the River Rhine. Hydrological Processes, 14, pp. 2355-2363. http://onlinelibrary.wiley.com/doi/10.1002/1099-1085%28200009%2914:13%3C2355::AID-HYP34%3E3.0.CO;2-R/abstract