2DH numerical morphodynamic models
2DH numerical morphodynamic models
Type
Hydromorphological models
Basic principles
Fundamental equations for conservation of water mass and water flow momentum, spatially averaged over water depth (hence “H” for horizontal plane in “2DH”) and time-averaged over all turbulent fluctuations (RANS = Reynolds Averaged Navier-Stokes equation) or time-averaged over only the smaller turbulent fluctuations (LES = Large Eddy Simulation). Parameterized relation for effect of helical flow on bed shear stress direction. Equilibrium sediment transport predictor or advection-relaxation equation for sediment transport. Empirical relation for effect of sloping beds on sediment transport magnitude and direction. Exner equation for conservation of sediment mass. Possibly with extension to mixtures of different sediment grain sizes, accounting for mutual interactions through empirical relations for hiding and exposure. Possibly with bank erosion equations or interface with bank dynamics model.
Outputs
Flow velocities, water depths, water levels, flow shear stresses. Sediment transport, bed level, erosion, sedimentation, bed sediment composition.
Rivertypes
Related Pressures
- Surface water abstraction
- Groundwater abstractions
- Hydropeaking
- Sediment discharge from dredging
- Reservoir flushing
- Hydrological regime modification
- Interbasin flow transfers
- Discharge diversions and returns
- Colinear connected reservoir
- Artificial barriers downstream from the site
- Artificial barriers upstream from the site
- Alteration of instream habitat
- Sand and gravel extraction
- Sedimentation and sediment input
- Embankments, levees or dikes
- Loss of vertical connectivity
- Impoundment
- Alteration of riparian vegetation
- Channelisation / cross section alteration
- Other pressures
Related Measures
- Improve/Create water storage
- Reduce water consumption
- Increase minimum flows
- Recycle used water
- Improve water retention
- Reduce surface water abstraction with return
- Water diversion and transfer
- Reduce surface water abstraction without return
- Reduce groundwater extraction
- Reduce undesired sediment input
- Manage dams for sediment flow
- Reduce erosion
- Add/feed sediment
- Prevent sediment accumulation in reservoirs
- Improve continuity of sediment transport
- Trap sediments
- Reduce anthropogenic flow peaks
- Modify hydropeaking
- Shorten the length of impounded reaches
- Increase flood frequency and duration in riparian zones or floodplains
- Favour morphogenic flows
- Link flood reduction with ecological restoration
- Ensure minimum flows
- Manage aquatic vegetation
- Establish environmental flows / naturalise flow regimes
- Facilitate downstream migration
- Manage sluice and weir operation for fish migration
- Remove barrier
- Install fish pass/bypass/side channel for upstream migration
- Modify culverts, syphons, piped streams
- Fish-friendly turbines and pumping stations
- Create low flow channels in over-sized channels
- Narrow water courses
- Widen water courses
- Allow/increase lateral channel migration or river mobility
- Remeander water courses
- Shallow water courses
- Add sediments
- Modify aquatic vegetation maintenance
- Initiate natural channel dynamics to promote natural regeneration
- Introduce large wood
- Remove sediments
- Remove bank fixation
- Remove or modify in-channel hydraulic structures
- Reduce impact of dredging
- Recreate gravel bar and riffles
- Develop riparian forest
- Remove non-native substratum
- Adjust land use to develop riparian vegetation
- Revegetate riparian zones
- Remove bank fixation
- Adjust land use to reduce nutrient, sediment input or shore erosion
- Improve backwaters
- Lower river banks or floodplains to enlarge inundation and flooding
- Isolation of water bodies
- Reconnect backwaters and wetlands
- Remove hard engineering structures that impede lateral connectivity
- Construct semi-natural/articificial wetlands or aquatic habitats
- Set back embankments, levees or dikes
- Restore wetlands
- Retain floodwater
- Other measures
Useful references
Selected software systems
Basement: http://www.basement.ethz.ch/
CCHE 2D: http://www.ncche.olemiss.edu/cche2d
Delft3D: http://www.deltaressystems.com/hydro/product/621497/delft3d-suite
FLO-2D: http://www.flo-2d.com/
FLUMEN: http://www.fluvial.ch/p/flumen.html
HYDRO_GS-2D: http://www2.hydrotec.de/vertrieb/hydro_as_2d/hydro-gs-2d
HYDRO_ST-2D: http://www2.hydrotec.de/vertrieb/hydro_as_2d/hydro-st-2d
IRIC: http://ws3-er.eng.hokudai.ac.jp/yasu/iric/20120525/iRIC_Sofware_Panf_en_120223.pdf
iSed
Mike21C: http://www.mikebydhi.com/Products/CoastAndSea/MIKE21.aspx
Rubar20: http://www.irstea.fr/rubar20
SED-2D: http://chl.erdc.usace.army.mil/sed2d
TELEMAC-2D & SUBIEF/SISYPHE
Theoretical background
Anderson M.G. [ed.](2000): Special Issue: The TELEMAC Modelling System. Hydrological Processes, Vol. 14,pp. 2207-2364.
Beffa C. (2003): 2D-Strömungssimulation mit Flumen. ÖWAV-Seminar 26.-27.2.2003 "Fließgewässermodellierung - von der Ein-zur Merhdimensionalität?!", Wien.
Crosato A. and Samir Saleh M. (2011): Numerical study on the effects of floodplain vegetation on river planform style. Earth Surface Processes and Landforms, 36, No.6, pp.711–720. http://onlinelibrary.wiley.com/doi/10.1002/esp.2088/abstract
Darby S.E., Alabyan A., van de Wiel M.J. (2002): Numerical simulation of bank erosion and channel migration for meandering rivers. Water Resources Research, Vol.38, No.9, p.1163. http://onlinelibrary.wiley.com/doi/10.1029/2001WR000602/abstract
Fäh R., Müller R., Rousselot P., Vetsch D., Volz C., Farshi D. (2008): System Manuals of BASEMENT, Version 1.5. Laboratory of Hydraulics, Glaciology and Hydrology (VAW), ETH Zürich.
Fäh R. (1997): Numerische Simulation der Strömung in offenen Gerinnen mit beweglicher Sohle. Mitteilung Nr. 153, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich.
Mosselman E. (1998): Morphological modelling of rivers with erodible banks. Hydrological Processes, Vol.12, No.8, pp.1357-1370. http://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291099-1085%2819980630%2912:8%3C1357::AID-HYP619%3E3.0.CO;2-7/abstract
Mosselman E. (2012): Modelling sediment transport and morphodynamics of gravel-bed rivers. Chapter 9 in Gravel-bed rivers: processes, tools, environments. Eds. M. Church, P. Biron & A.G. Roy, 2012, Chichester, John Wiley & Sons: 563pp. ISBN 978-0-470-68890-8, pp.101-115.
Spasojevic M. and Holly F.M. (1990): 2-D Bed Evolution in Natural Watercourses - New Simulation Approach. ASCE Journal of Waterway, Port, Coastal, and Ocean Engineering, 116 (4), pp. 425-443. http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-950X%281990%29116%3A4%28425%29
Struiksma N., Olesen K.W., Flokstra C., de Vriend H.J. (1985): Bed deformation in curved alluvial channels. Journal of Hydraulic Research, IAHR, Vol.23, No.1, pp.57-79. http://www.tandfonline.com/doi/abs/10.1080/00221688509499377
Tritthart M., Schober B., Liedermann M., Habersack H. (2009): Development of an Integrated Sediment Transport Model for a Large Gravel Bed River. Proceedings, 33rd IAHR Congress, Vancouver, Canada.
Wu W., Rodi W., Wenka T. (2000): 3D numerical modeling of flow and sediment transport in open channels. Journal of Hydraulic Engineering, 126, pp. 4-15. http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%282000%29126%3A1%284%29
Wu W. (2001): CCHE2D Sediment Transport Model version 2.1. NCCHE Technical Report. NCCHE-TR-2001-03, University of Mississippi, MS, USA.
Sample applications
Montes Arboleda A., Crosato A., Middelkoop H. (2010): Reconstructing the early 19th-century Waal River by means of a 2D physics-based model. Hydrological Processes, 24, No.25, pp. 3661–3675. http://onlinelibrary.wiley.com/doi/10.1002/hyp.7804/abstract
Fäh R., Müller R., Rousselot P., Vetsch D. (2008): Sohlenentwicklung in einer Flussaufweitung beim Durchgang einer Hochwasserwelle - Vergleich zwischen Messung und numerischer Modellierung. Wasser Energie Luft, 100. Jahrgang, Heft 2, Baden.
Moser M., Eckerstorfer T., Jäger G. (2007): Möglichkeiten und Grenzen im Einsatz von numerischen hydraulischen Simualtionsmodellen als Werkzeug und Unterstützung zu gebräuchlichen Berechnungsmethoden bzw. Verfahren für die Abgrenzung und Barstellung von Gefahrenzonen am Beispiel des Zederhausbaches. Dresdner Wasserbauliche Mitteilungen, Heft 35, S. 525-534.
Weilbeer H., Zielke W. (2000): Application of the TELEMAC system to the simulation of dumping of excavated material in the River Rhine. Hydrological Processes, 14, pp. 2355-2363. http://onlinelibrary.wiley.com/doi/10.1002/1099-1085%28200009%2914:13%3C2355::AID-HYP34%3E3.0.CO;2-R/abstract